注册

克拉默(克拉默法则适用条件)

2026-02-06 05:35:55 军起资讯网 
  • 腾讯QQ
  • QQ空间

今天给各位分享克拉默的克拉知识,其中也会对克拉默法则适用条件进行解释,默克如果能碰巧解决你现在面临的拉默问题,别忘了关注本站,法则现在开始吧!适用

克拉默法则

克莱姆法则,条件又译克拉默法则(Cramer's Rule)是克拉线性代数中一个关于求解线性方程组的定理。

1、默克当方程组的拉默系数行列式不等于零时,则方程组有解,法则且具有唯一的适用解。

2、条件如果方程组无解或者有两个不同的克拉解,那么方程组的默克系数行列式必定等于零。

3、拉默克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。

克拉默法则(Kramer's rule)是一种直接用行列式解线性方程组的方法。把线性方程组记为矩阵乘法的形式。

Ax=b(1)(1)Ax=b

其中 AA 为系数矩阵。当 AA 为 N×NN×N 的方阵且行列式 |A|≠0|A|≠0 时(即满秩矩阵),方程有唯一解(见 “线性方程组解的结构”)。该解可以用克拉默法则直接写出:

xi=|Ai||A|(i=1,…,N)(2)(2)xi=|Ai||A|(i=1,…,N)

其中 AiAi 是把 AA 的第 ii 列替换为 bb 而来。

例如:解方程组

令式 1 中 A=(21−13)A=(21−13),b=(45)b=(45),求解方程组。

解:|A|=7|A|=7,|A1|=∣∣∣4153∣∣∣=7|A1|=|4153|=7,|A2|=∣∣∣24−15∣∣∣=14|A2|=|24−15|=14。代入式 2 得 x=(12)x=(12)。

在数值计算时,克拉默法则解方程组效率较低,直接用高斯消元法求逆矩阵高斯消元法求逆矩阵会更快。

推论1)n元齐次线性方程组有惟一零解的充要条件是系数行列式不等于零,系数矩阵可逆(矩阵可逆=矩阵非奇异=矩阵对应的行列式不为0=满秩=行列向量线性无关);

2)n元齐次线性方程组有非零解的充要条件是系数行列式等于零。

xml法则总结

1.克莱姆法则的重要理论价值:

1)研究了方程组的系数与方程组解的存在性与惟一性关系;

2)与其在计算方面的做用相比,克莱姆法则更具备重大的理论价值。(通常没有计算价值,计算量较大,复杂度过高)

2.应用克莱姆法则判断具备N个方程、N个未知数的线性方程组的解:

1)当方程组的系数行列式不等于零时,则方程组有解,且具备惟一的解;

2)若是方程组无解或者有两个不一样的解,那么方程组的系数行列式一定等于零;

3)克莱姆法则不单单适用于实数域,它在任何域上面均可以成立。

3.克莱姆法则的局限性:

1)当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效;

2)运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式。

不确定的情况

1.当方程组没有解时,称为方程组不兼容或不一致,当存在多个解决方案时,称为不确定性。对于线性方程,不确定的系统将具有无穷多的解(如果它在无限域上),因为解可以用一个或多个可以取任意值的参数来表示。

2.克拉默规则适用于系数行列式非零的情况。在2×2的情况下,如果系数行列式为零,则如果分子决定因子为非零,则系统不兼容,如果分子决定因素为零,则系统不兼容。

3.对于3×3或更高的系统,当系数行列式等于零时,唯一可以说的是,如果任何分子决定因素是非零的,那么系统必须是不兼容的。然而,将所有决定因素置零都不意味着系统是不确定的。 3×3系统x + y + z = 1,x + y + z = 2,x + y + z = 3的一个简单的例子,其中所有决定因素消失(等于零)但系统仍然不兼容。

克拉默法则适用于变量和方程数目相等的线性方程组。克莱姆法则是线性代数中一个关于求解线性方程组的定理,研究了方程组的系数与方程组解的存在性与唯一性关系;与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值。

克拉默法则怎么用

克拉默法则解方程组过程:先求系数行列式,再求各未知数对应的行列式,相除得到方程的解。

应用克拉默法则判断具有N个方程、N个未知数的线性方程组的解:

(1)当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解;

(2)如果方程组无解或者有两个不同的解,那么方程组的系数行列式必定等于零

(3)克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。

克莱姆法则的局限性:

(1):当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效。

(2):运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式。

克拉默法则产生时间:这项法则是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的。

作者介绍:克莱姆(Cramer,Gabriel,瑞士数学家 1704-1752)克莱姆1704年7月31日生于日内瓦,早年在日内瓦读书,1724 年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自 1727年进行为期两年的旅行访学。在巴塞尔与约翰.伯努利、欧拉等人学习交流,结为挚友。后又到英国、荷兰、法国等地拜见许多数学名家,回国后在与他们的长期通信 中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。

作者成就:主要著作是《代数曲线的分析引论》(1750),首先定义了正则、非正则、超越曲线和无理曲线等概念,第一次正式引入坐标系的纵轴(Y轴),然后讨论曲线变换,并依据曲线方程的阶数将曲线进行分类。为了确定经过5 个点的一般二次曲线的系数,应用了著名的“克莱姆法则”,即由线性方程组的系数确定方程组解的表达式。该法则于1729年由英国数学家马克劳林得到,1748年发表,但克莱姆的优越符号使之流传。

克拉默为什么叫晕菜

因为克拉默的最初印象是2014年世界杯决赛中顶替赛前热身中受伤的赫迪拉而获得决赛首发位置。原本克拉默充当奇兵,但在上半场比赛进行到第19分钟的时候,克拉默在争抢皮球时头部撞到阿根廷后卫加雷的肩膀。在接受长时间治疗后,克拉默回到场上继续比赛。但回到赛场的克拉默显然有些头晕(出现脑震荡及短暂失忆现象),于是在31分钟后他被许尔勒换下。“小晕菜”的雅号就此在球迷圈内传开,可谓一“晕”成名、“晕”夺世界杯冠军。

克拉默法则通俗解释 克拉默法则介绍

1、克拉默法则通俗解释 :克拉默法则是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组。

2、克莱姆法则,又译克拉默法则(Cramers Rule)是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。

3、对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的。

4、克莱姆(Cramer,Gabriel,瑞士数学家 1704-1752)克莱姆1704年7月31日生于日内瓦,早年在日内瓦读书,1724 年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自 1727年进行为期两年的旅行访学。在巴塞尔与约翰.伯努利、欧拉等人学习交流,结为挚友。后又到英国、荷兰、法国等地拜见许多数学名家,回国后在与他们的长期通信 中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。

克拉默法则适用条件什么东西啊?

克拉默法则适用于变量和方程数目相等的线性方程组。

克莱姆法则是线性代数中一个关于求解线性方程组的定理,研究了方程组的系数与方程组解的存在性与唯一性关系;与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值。

克拉默法则解方程组过程:先求系数行列式,再求各未知数对应的行列式,相除得到方程的解。

克莱姆法则的局限性:

(1)当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效。

(2)运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式。

应用克拉默法则判断具有N个方程、N个未知数的线性方程组的解:

(1)当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解。

(2)如果方程组无解或者有两个不同的解,那么方程组的系数行列式必定等于零。

(3)克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。

克拉默的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于克拉默法则适用条件、克拉默的信息别忘了在本站进行查找喔。

写评论已有0条评论跟帖用户自律公约
提 交还可输入500

财道头条